Regents C Name:	mistry: Do Now on Electron Configuration Date:				
Match eac	h configuration with the best de	scriptio	n.		
1. 1s ² 2s	² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ⁵	(A)	has 3 unpaired	1	
2. 1s ² 2s	² 2p ⁵ 3s ¹	(B)	electrons is 5 full orbitals	2	
3. 1s ² 2s	² 2p ³	(C)	has 2 valence	3	
4. 1s ² 2s	² 2p ⁶	(D)	electrons is an excited state	4	
5. 1s ² 2s	² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁸	_(E)	is a noble gas	5	
6. 1s ² 2s	² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰ 4p ⁶	(F)	has 11 electrons	6	
Answer the	following questions for the con	figuratio	on 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶	4s ² 3d ¹⁰ 4p ³	
7. How ma	ny full principal energy levels?	1			
8. How ma	ny full orbitals?		*		
9. How ma	ny electrons?				
10. How ma	ny unpaired electrons?				
11. How ma	ny valence electrons?				
12. How ma	ny completely filled sublevels?				
13. What is	the principal quantum number o	of the hi	ghest occupied energ	gy level?	
Noble Gas Electron Configuration (Valence shell is underlined.)				Electrons in the valence	
helium	$1s^2$			shell 2	
neon	1s ² 2s ² 2p ⁶			8	
argon	1s² 2s²2p ⁶ <u>3s²3p</u> ⁶		W	8 -	
krypton	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ⁶	5		8	
xenon	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ⁶	⁵ 4d ¹⁰ 4f ¹	⁴ 5s ² 5p ⁶	8	
radon	$1s^2 2s^2 2n^6 3s^2 3n^6 3d^{10} 4s^2 4n^6$	Ad ¹⁰ Af ¹⁴	4 5e ² 5n ⁶ 5d ¹⁰ 6e ² 6n ⁶	1 2	

Electron configuration Worksheet

	NAME:		DATE:
	1. Write the full ele	ectron configuration Aluminum. How many valence e	electrons are there?
:	2. Write the full ele	ectron configuration of Argon. How many valance ele	ectrons are there?
3	3. Write the full ele	ectron configuration of Potassium. How many valance	e electrons are there?
4	4. Write the electron	n configuration of Lithium using Kernal notation.	
5	. Write the electron	configuration of Potassium using Kernal notation	
6 e:	. What is the <u>full</u> el lement is this?	lectron configuration of the atom with a configuration	n of 2-8-8-2? What
7 el	'. Write the full ele	ectron configuration of the atom with a configuration	of 2-8-13-1? What
8.	Which electron co	onfiguration represents an excited state of Magnesiun	n?
	2-6-2 2-8-0-1-1	c) 2-8-2 d) 3-7-1-1	1

Regents Chemistry: Practi	ce for electron structure	Date:		
1. A K atom <i>differs</i> from a K ⁺ ion in that the K atom has one		10. As an electron in a hydrogen atom moves from the second principal energy level to the first principal energy level, the energy of the atom		
(1) more electron	(3) more proton	-,		
(2) less electron	(4) less proton	(1) decreases	(3) remains the same	
	cms with only one completely	(2) increases		
filled principal energy level?		11. As an electron in an atom moves from the ground		
(1) N	(3) As		state, the potential energy of	
(2) P	(4) Sb	the electron	400	
What is the maximum	number of electrons that	(1) decreases	(3) remains the same	
may be present in the	second principal energy level	(2) increases		
of an atom?			ge to a higher energy level or a	
(1) 8	(3) 18		Which statement is true of	
(2) 2	(4) 32	electron X?		
	number of the outermost	(1) Electron X emits energy when it changes to a		
	the ground state is $n=3$.	higher energy level.		
	ber of occupied principal	(2) Electron Xabso	rbs energy when it changes to	
energy levels containe	ed in this atom?	a higher energy	level.	
(1) 1	(3) 3	• •	rbs energy when it changes to	
(2) 2	(4) 4	a lower energy l		
5. In an aluminum atom i	* *		ner emits nor absorbs energy	
	ntains the most electrons has	when it changes		
the principal quantum			bright-line spectrum of an	
(1) 1	(3) 3	element is produced		
(2) 2	(4) 4	(1) are given off as		
	of electrons that can occupy	(2) are gained from		
	el (n) of an atom is equal to	(3) move to higher		
$(1) n^2$		(4) fall back to low	- ·	
(2) $2n^2$	(4) $n^2 + 2$		shows the characteristic	
	otal of 25 electrons. When		ns of four elements. Also shown	
the atom is in the gro		•	roduced by an unknown	
•	nergy levels will contain	substance.		
electrons?				
(1) 1	(3) 3	u		
	(4) 4	H		
(2) 2	ment in the ground state	He Na		
	th a principal quantum number	Unknown		
(n) of 4?	The principal quantum number			
• •	(3) No			
(1) Kr	(3) Ne			
(2) Ar	(4) He		ents is present in the unknown?	
• •	atom in an excited state fall	(1) lithium and sodi	ium (3) lithium and helium	
- ·	to lower energy levels, energy is		rogen (4) helium and hydrogen	
(1) absorbed, only			ergy level change by the	
(2) released only		TO. WHICH PHINCIPAL SILE	7 3/ 14/4/	

electron of a hydrogen atom will cause the

(1) n = 2 to n = 4

(2) n = 2 to n = 5

greatest amount of energy to be absorbed?

(3) n = 4 to n = 2

(4) n = 5 to n = 2

(2) released, only

(3) neither released nor absorbed

(4) both released and absorbed

- 1. Which principal quantum number is assigned to the valence electrons of a carbon atom in the ground state?
 - (1) 1

(3) 3

(2) 2

- (4) 4
- 2. Which ion contains the same total number of electrons as Cl-?
 - (1) Mg²⁺
- (3) S^{2-}
- (2) Na⁺
- (4) Br
- 3. What is the total number of valence electrons in an atom of xenon?
 - (1) 0

(3) 8

(2) 2

- (4) 18
- 4. Which ion has the same electron configuration as an H ion?
 - (1) Li⁺
- (3) F
- (2) K^{+}
- (4) CI
- 5. What is the electron configuration for Be2+ ions?
 - (1) 2-1
- (3) /
- (2) 2-2
- (4) D
- 6. When a calcium atom loses its valence electrons, the ion formed has an electron configuration which is the same as an atom of
 - (1) CI
- (3) K
- (2) Ar
- (4) Sc-

- 7. The characteristic bright-line spectrum of an atom is produced when
 - (1) nuclei of atoms undergo fusion
 - (2) nuclei of atoms undergo fission
 - (3) electrons move from lower to higher energy levels
 - (4) electrons move from higher to lower energy
- 8. Which species has the same electron configuration as a Cl ion?
 - (1) Br
- (3) S

- (2) F
- (4) Ar ...
- 9. In which pair of elements do the nuclei of the atoms contain the same number of neutrons?
- (1) ${}^{32}_{16}S$ and ${}^{35}_{17}Cl$ (3) ${}^{14}_{7}N$ and ${}^{80}_{8}U$ (2) ${}^{23}_{17}Na$ and ${}^{24}_{19}Mg$ (4) ${}^{7}_{3}Li$ and ${}^{9}_{4}Be$
- 10. An experiment in which alpha particles were used to bombard thin sheets of gold foil led to the conclusion that an atom is composed mostly of
 - (1) empty space and has a small, negatively charged nucleus
 - (2) empty space and has a small, positively charged nucleus
 - (3) a large, dense, positively charged nucleus
 - (4) a large, dense, negatively charged nucleus